Conditional Mutual Information Based Boosting for Facial Expression Recognition

نویسندگان

  • Caifeng Shan
  • Shaogang Gong
  • Peter W. McOwan
چکیده

This paper proposes a novel approach for facial expression recognition by boosting Local Binary Patterns (LBP) based classifiers. Low-cost LBP features are introduced to effectively describle local features of face images. A novel learning procedure, Conditional Mutual Information based Boosting (CMIB), is proposed. CMIB learns a sequence of weak classifiers that maximize their mutual information about a candidate class, conditional to the response of any weak classifier already selected; a strong classifier is constructed by combining the learned weak classifiers using the Naive-Bayes. Extensive experiments on the Cohn-Kanade database illustrated that LBP features are effective for expression analysis, and CMIB enables much faster training than AdaBoost, and yields a classifier of improved classification performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Mutual Infomation Based Boosting for Facial Expression Recognition

This paper proposes a novel approach for facial expression recognition by boosting Local Binary Patterns (LBP) based classifiers. Low-cost LBP features are introduced to effectively describle local features of face images. A novel learning procedure, Conditional Mutual Infomation based Boosting (CMIB), is proposed. CMIB learns a sequence of weak classifiers that maximize their mutual informatio...

متن کامل

Facial Expression Recognition Based on Anatomical Structure of Human Face

Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...

متن کامل

Improving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value

Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...

متن کامل

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005